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In this article we will show that the problem of computing the minimum distance of
an arbitrary binarv linear code is NP complete. This strongly suggests, but does not imply,
that it is impossible to design a computer algorithm for computing the minimum distance
of an arbitrary code whose running time is bounded by a polynomial in the number of

nputs.

l. Introduction

One of the recurring problems in the design of coded
communication systems for the DSN or other applications is
the search for the best code for the job. For reasons of
economy and simplicity. the search is usually restricted to the
class of binary linear codes, a linear code being one that is
defined as the rowspace of a certain binary matrix G called the
code’s generator matrix. If the matrix G has size ¥ X n and
row-rank k, the code is called an (n, k) linear code; its
transmission rate is k/n bits per symbol. Among all linear
codes C with a fixed n and k there is a wide range of
performance possible; the best such code (on a memoryless
channel) is, however, the one with the largest minimum

distance d,, ,;,, . Here

dyy o =mindd (x,y): x, veC x#y}

mit

where d(x,y) is the Hamming distance between the distinct
code vectors x and y, i.e. the number of components in which
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x and y differ. Since the code is linear, d, .. isequal to the

minimum nonzero weight of the code W,oin'

Wi = min{w (x): xeC x # 0}

where w,(x) is the Hamming weight of x, i.e. the number of
nonzero components of x.

Now given an arbitrary binary & X n matrix G, to find
Wi for the corresponding code it is apparently necessary to
compute each of the 2¥ - 1 nonzero linear combinations of
the rows. This procedure is not feasible even by computer
unless & is relatively small; we would like to find a more
efficient procedure, if possible. However, in the remaining
sections of this paper we will show that it is quite unlikely that
such a procedure exists.

In the next section we shall describe a recently-developed
technique that can sometimes be used to show the inherent
intractability of a specific problem. In Section III we shall
apply this technique to the W, i Problem.
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ll. NP-Complete Problems

The following discussion will describe in heuristic language
a set of results that can be made quite precise. The interested
reader should consult Ref. 1, Chapter 10, or Ref. 2 for details.

The class P is defined to be the set of computational
problems that can be solved by an algorithm that is guaranteed
to terminate in a number of steps bounded by a polynomial in
the length of the input. (P is sometimes called the class of
polvnomial-time algorithms.) Problems in the class P are
generally regarded to be tractable: conversely those not in P
are considered intractable. The class P includes such problems
as solving linear equations, finding the minimum cut in a
flowgraph, certain scheduling problems, etc.

The class NP is defined to be the set of computational
problems that can be solved by a backtrack-search-type
algorithm, where the depth of search is bounded by a
polynomial in the length of the input. Alternatively, VP is the
set of problems solvable by a nondeterministic algorithm
whose running time is bounded by a polynomial in the length
of the input. A nondeterministic algorithm is one that when
confronted with a choice between two alternatives, can create
two copies of itself and simultaneously follow up the
consequences of both courses. This repeated splitting may lead
to an exponentially growing number of copies: the algorithm is
said to solve the given problem if any of these copies produces
the correct answer. For this reason the class VP is often called
the class of nondeterministic polvnomial-time algorithms.

The class NP is quite extensive; it contains such problems as
the traveling salesman’s problem, the O-1 integer programming
problem, the graph characteristic number problem, and many
decoding problems.

The class AP clearly contains the class P as a subclass: NP 2
P. It is conversely intuitively evident that NP is ““‘much larger”
than P: however, no one has yet succeeded in proving this and
the query NP+ P ?is currently one of the central problems of
computer science. However. recently a circle of results has
been developed that strongly suggests, but does not rigorously
imply. that NP 3= P. We now describe these results.

In 1971 Cook (see Ref. 1, Theorem 10.3) proved that a
certain problem in NP (called the satisfiability problem) has
the following curious property. Any problem (p) in NP can be
reduced to the satistiability problem, in the sense that if a
polynomial-time algorithm could be tound tor the satisfiability
problem. then that algorithm could be moditied to yield a
polynomial-time algorithm for problem (p). Thus while it is
possible that satisfiability might possess a polynomial-time
algorithm, if it does, so would the traveling salesman’s
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problem, integer programming, etc., indeed any problem in
NP. But researchers have worked on these NP problems for
many years without ever finding a polynomial-time algorithm
for any of them. This is strong evidence that satisfiability does
not possess a polynomial-time algorithm and that NP+ P.

In a later paper Karp (Ref. 2) reversed things and showed
that the satisfiability problem can itself be reduced in the
sense described above to many other (21, to be exact) NP
problems. Thus if any of these NP problems possesses a
polynomial time algorithm, then so does every problem, and
hence NP = P. NP problems with this property are now
called NP-complete problems. At this writing there are
dozens of problems known to be NP complete; and if the
“obvious” assertion NP # P is true, then no NP-complete
problem can have a polynomial-time algorithm.

In the next section we shall show that certain problems
related to assessing the performance of a binary linear code
are NP complete. We shall do this by reducing a known
NP-complete problem to the problems that interest us.

Iil. The NP completeness of Finding wmin

In this section we will show that the problem of finding
W,;n for a linear code from its generator matrix is NP
complete. However, we must first state our problem in a
suitable form. Here is our formally stated problem:

(Gk, w)

INPUT: A binary k& X n matrix G, of rank k. and a
positive integer w.

PROPERTY: There is a linear combination of rows of
G with Hamming weight w.

(In this subject, the problems are always stated in this way.
since the theory can deal only directly with problems
possessing a ‘“‘yes” or “no” answer. The input must be
encoded into a binary string of length N, say, and fed into a
computing device, which outputs either 0 (yes) or 1 (no)
after a certain length of time. If there is such a device for
which the time is bounded by a polynomial function of N,
the problem is in P; otherwise not.)

Although we have so far been describing codes by their
generator matrices, it is also possible to use the paritv-check
matrices. If the code C has G, as a generator matrix, then it
will possess a (n - k) X n parity-check matrix H, _,. where
ceC iff HeT = 0. Since one can compute H,_, from G, (and



vice versa) in polynomial time via elementary row opera-
tions, it follows that the problem (G, w) is NP complete iff
the following problem is:

(Hn—k’ W)

INPUT: A binary (n - k) X n matrix of rank &k and a
positive integer w.

PROPERTY: There is a vector ¢ of weight w such that
H _ch = 0.

n

We show now that (G, w) (and hence also (H, _,, w)) is
NP complete by successively showing that the following
problems are NP complete.

PARTITION INTO TRIANGLES
INPUT: The incidence matrix of an undirected graph I'.

PROPERTY: The vertices of I can be covered by dis-
joint triangles.

(G, €, w)

INPUT: A binary matrix G and integers ¢, w.

PROPERTY: There exists a linear combination of {
rows of G having weight w.

(G, w)

INPUT: A binary matrix G and an integer w.

PROPERTY: There exists a linear combination of rows
of G having weight w.

(G,. 4 w)

INPUT: A binary & X n matrix G of rank k& and
integers £, w.

PROPERTY: There exists a linear combination of £
rows of G, having weight w.

It is easily verified that each of the 6 problems listed
above is in NP. Furthermore, the problem PARTITION
INTO TRIANGLES is known to be NP complete (Ref. 3).

We shall now produce a sequence of reductions (see
Fig. 1) that will show that each of the other five is also NP
complete.

A reduction from problem A to problem B will be
denoted by the symbol 4 « B. Such a reduction will always
be of the following general form: we show that problem A
can be ‘“encoded” in polynomial time into problem B in
such a way that a solution to the B problem immediately
yields a solution to the corresponding A problem. In the
cases that the input variables of problems A and B are
denoted by the same letters, we shall add a prime to the
input symbols for problem B.

PARTITION INTO TRIANGLES = (G, £, w)

Let the columns of G correspond to the » points of I
the rows to the triangles of I'. (Thus each row of G has
exactly three nonzero entries.) Let €= n/3 and w = n. Then
(G, 2, w) has an affirmative answer iff TRIANGLE does.

(G, &, w) <(G',w)

If G has n columns, let G' be the matrix formed by
adjoining n + 1 copies of the identity matrix / to G, ie. G' =
(G ... ). Let w =8&(n + 1)+ w. Since € and w can be
recovered from w’ (they are the quotient and remainder
when w' is divided by n + 1), it follows that (G, w') has an
affirmative answer iff (G, £, w) does.

(G, 4, w) (G, &, w)

Let G, = (G|[) and set w' = w + £, Q"= € Note that G,
has rank k& even though G may have rank less than k.

(Gk5 Q’ ‘v) & (GI{,7 “/’I)

If G, has n columns, let G be the matrix formed by
adjoining to G, n+ 1 copies of the identity matrix [, i..
Gp = (G .. L D). Let w'=8(n+ 1)+ w as before.
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Fig. 1. The reductions showing the NP completeness of

our problems
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